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Abstract

This work describes a method for detecting and track-
ing ocean fronts using multiple autonomous underwa-
ter vehicles. Multiple vehicles — equally-spaced along
the expected frontal boundary — complete near paral-
lel transects orthogonal to the front. Lateral gradients
are used to determine the location of the front cross-
ing from each individual vehicle transect by detecting
a change in the observed water property. Adaptive
control of the vehicles ensure they remain perpendicu-
lar to the estimated front boundary as it evolves over
time. This method was demonstrated in and around
Monterey Bay, California in May of 2017. We compare
the front detection method to previously used meth-
ods. We introduce a metric in order to evaluate the
adaptive control techniques presented. We show the ca-
pability of this method for repeated sampling across a
dynamic two-dimensional ocean front using short-range
Iver AUVs. This method extends to tracking gradients
of different properties using a variety of vehicles.

Introduction
Space-based remote sensing can provide extensive infor-
mation about ocean dynamics. However, remote sens-
ing information is generally limited to measuring the
ocean surface. To probe the ocean interior efficiently
requires marine vehicles such as autonomous underwa-
ter vehicles (AUVs), gliders, profiling buoys, surface
vehicles, and ships sampling in situ. Unfortunately,
building, deploying and operating these in situ ma-
rine robotic explorers is expensive. As a result, any
actual study involves a limited number of marine ve-
hicles, especially when compared to the vast expanse
of the ocean. Determining where to deploy and operate
marine assets is a challenging problem given the 4D spa-
tiotemporal variations in oceanographic phenomena.

The use of autonomous marine vehicles will increase
as the size of ocean observing systems expand in or-
der to study the impact of the oceans on Earth’s
climate and ecosystems. The day-to-day operations
of these systems will become increasingly difficult if
human intervention is required. In order to enable
large observing systems to operate, techniques for au-
tonomous control of assets based on science goals and

data sources such as in situ measurements, remote-
sensing, and model-derived data need to be developed.
The Keck Institute for Space Studies (KISS) Satellites
to Seafloor project works towards this goal of fully au-
tonomous sampling [Thompson et al., 2017]. Previ-
ous ocean observing systems have relied on substantial
human intervention or non-adaptive sampling strate-
gies, including the Autonomous Ocean Sampling Net-
works (AOSN) [Curtin and Bellingham, 2009; Curtin
et al., 1993; Haley et al., 2009; Leonard et al., 2007;
Ramp et al., 2009] and the Adaptive Sampling and Pre-
diction (ASAP) [Leonard et al., 2010] projects.

One approach is to deploy in situ assets to study
coherent scientific features such as fronts, eddies, up-
welling events, and harmful algal blooms. A typical
strategy would be to deploy marine assets to measure
transects across the feature of interest at a scale that
covers the feature, as well as a baseline signal around
the feature. However, asset capabilities (e.g. mobility,
endurance) and prevailing ocean currents may render
these science goals unachievable. Our project targets
automatic generation of coordinated mission plans for
teams of assets to follow these science derived observa-
tion policies (e.g. the use of multiple vehicles to perform
transects orthogonal to a front). This paper specifically
describes an approach using multiple vehicles to make
a linear estimation of an ocean front’s geometry and to
continuously direct a team of marine robotic vehicles
to perform orthogonal transects with the midpoint of
the transect roughly centered on the target front. We
describe both the general approach for front-crossing
detection, front-geometry estimation, and multi-asset
control as well as results from deployment and testing of
this approach using short-range Iver Autonomous Un-
derwater Vehicles in Monterey Bay in late spring 2017.
The full results from the deployment, including the use
of underwater gliders and Long-Range AUVs, are pre-
sented in Branch et al. [2018]. This paper focuses on
the results using the Iver AUVs. This deployment was
the result of a team effort between the KISS project
members and the MBARI Spring 2017 CANON par-
ticipants [Monterey Bay Aquarium Research Institute,
2017]. The method presented here represents significant



steps towards the fully-autonomous adaptive sampling
framework as envisioned in Thompson et al. [2017].

The remainder of this paper is organized as follows.
First, we provide science context to the target prob-
lem of front tracking. Second, we describe the front-
crossing detection method. Third we describe the front-
geometry estimation and tracking algorithm used to es-
timate a linear front across multiple vehicles and pro-
duce resultant vehicle transects. Fourth, we describe
the experimental setup with the Iver AUVs. Fifth, we
describe the results from the field deployments. Finally,
we discuss related and future work and summarize the
results of the experiment.

Science Context
Coherent fronts are ubiquitous features of the ocean
circulation. Fronts, defined as regions of enhanced gra-
dients in water mass or tracer properties, can occur
across different scales spanning many hundreds of kilo-
meters, such as the strong western boundary currents
(e.g. the Gulf Stream), to smaller-scale filamentary fea-
tures which are often associated with the fringes of co-
herent mesoscale eddies, but may cascade down to the
meter scale [D’Asaro et al., 2017]. Due to the earth’s
rotation, lateral gradients in density at ocean fronts can
generate strong (and strongly-sheared) along-front ve-
locities. These velocities can, in various scenarios, act
to both enhance the front by suppressing mixing or en-
hance mixing due to the generation of flow instabili-
ties [Bower, Rossby, and Lillibridge, 1985]. Fronts may
also be regions of intense vertical velocities and vertical
fluxes. This may occur either because density surfaces
tilt across strong fronts, leading to strong vertical, but
still largely along-isopycnal advection. Alternatively, at
sharp fronts, relative vorticity may be enhanced such
that the Rossby number, defined as the ratio of the
vertical relative vorticity ζ = ∂v/∂x − ∂u/∂y to the
Coriolis frequency f , becomes comparable to or greater
than 1. In this regime, the effects of rotation that con-
strain the velocity field to be largely horizontal begin
to break down and vertical velocities can become en-
hanced. This dynamical regime is known as the subme-
socale [McWilliams, 2016; Thomas, Tandon, and Ma-
hadevan, 2008] and can generate vertical velocities on
the order of hundreds of meters per day over most of
the ocean [Su et al., 2018].

This enhancement of vertical velocities at the sub-
mesoscale has important implications for the coupling
between the physical circulation and ocean biogeochem-
istry. Primary production in the ocean is characterized
by a “patchiness” implying a large degree of spatial and
temporal intermittency [Martin et al., 2002]. Ocean
fronts have been identified as locations where primary
production may be transiently enhanced, especially in
oligotrophic waters due to the injection of nutrient-rich
waters to the surface ocean [Brannigan, 2016; Lévy,
Klein, and Treguier, 2001; Mahadevan, 2016]. More
recent work has shown that frontal instabilities can
rapidly shoal the mixed layer and lead to phytoplankton

blooms due to a relaxation of light limitations [Mahade-
van et al., 2012; Taylor and Ferrari, 2011]. These latter
studies imply that ocean fronts can also regulate car-
bon cycling in subpolar latitudes. Ocean fronts have
also been shown to have a large impact on large marine
ecosystem [Belkin, Cornillon, and Sherman, 2009].

Therefore, for both physical and biogeochemical rea-
sons, ocean fronts tend to be hotspots of turbulent mix-
ing, ventilation (the transfer of near-surface water prop-
erties into the ocean interior) and subduction. Further-
more, the implication is that a significant portion of
the exchange between the near-surface ocean and the
ocean interior occurs over a relatively small fraction
of the surface ocean. Thus there is a need to dedi-
cate greater resources to the study of these frontal fea-
tures, both to improve our mechanistic understanding
of how these fronts develop, evolve and impact trans-
port properties, but also so that they can be effectively
represented in data-assimilating numerical simulations
of the ocean circulation.

Front-Crossing Detection

Lateral Gradient Front-Crossing Detection

The KISS team developed an algorithm to identify a
subsurface oceanic fronts based on lateral gradients of
a given hydrographic property. This could be tempera-
ture, buoyancy or density (if salinity data is available),
or any available biogeochemical property such as dis-
solved oxygen or chlorophyll.

When in situ data is received in near real time, the al-
gorithm grids the field, smooths it by applying a simple
linear weighted average of immediate neighboring mea-
sured data points, and calculates the lateral gradients
(Figure 1). Smoothing parameters must be selected be-
fore using this algorithm in a near real time application.
The algorithm uses temporal gradients, and assumes
that time can be linearly related to distance. The al-
gorithm then calculates the lateral gradients along the
transect within the layer of interest (defined beforehand
by the user) as well as the mean value, and the standard
deviation. The user also defines beforehand the number
of standard deviations used to declare a front-crossing
detection. All points above this threshold are consid-
ered potential front crossings (Figure 2). To qualify for
a frontal crossing, it is required that the threshold is
crossed twice (once entering and once leaving the high
gradient region). Half-crossings do not qualify. The
width of the front is used to choose the front crossing
of interest if more than one is present. The front lo-
cation, width, and time of crossing is then output for
later use in vehicle tasking. An example is shown in
Figure 1 and Figure 2. Time, as apposed to distance, is
plotted on the x-axis as that is what the algorithm uses.
Using real time data from May 4, 2017 (Figure 1d) the
algorithm detects five narrow subsurface fronts from 10
to 15 m deep (Figure 2a), and selects the widest front
(Figure 2d).

The front-crossing detector can be customized, for ex-
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Comparison to previous methods

ample, to select only positive or negative frontal cross-
ings. This could be useful in the event of targeting a
cold or warm eddy. It can also be modified to select, in-
stead of the widest front, the front corresponding to the
maximum lateral gradient, if desired. The capability of
selecting the depths over which the lateral gradients
were to be evaluated allows the user to target surface
fronts, or instead, focus only on deeper fronts.

Figure 1: Lateral gradient front-crossing detector. For
this example we use data obtained on May 4, 2017 from
Iver 136 (segment 000). Real-time in situ temperature
data (shown in scatter plot in panel a) is gridded (panel
b) and smoothed (panel c). Then, lateral gradients are
calculated (panel d). When used in real time, the algo-
rithm uses temporal gradients, and assumes that time
can be linearly related to distance.

Comparison to previous methods

Next we briefly compare the front-crossing detection
technique presented above to a previous upwelling front
detection technique developed by Monterey Bay Aquar-
ium Research Institute (MBARI) [Zhang et al., 2012a,b,
2013]. This previous method is based on the vertical
temperature structure measured on the AUV’s saw-
tooth (i.e., yo-yo) trajectory. In stratified water, the
vertical temperature difference is large: warm at surface
and cold at depth. The upwelling process breaks down
stratification and makes water properties more verti-
cally homogeneous. Consequently, the vertical tem-
perature difference between shallow and deep depths is
smaller in upwelling regions. To enable an AUV to au-
tonomously differentiate between upwelling and strati-
fied water columns, Zhang et al. used a classification
metric — the vertical temperature homogeneity index
(VTHI) [Zhang et al., 2012b]

For this comparison, we use data obtained on May 1,
2017. Vertical sections in Figure 3 show the presence
of a front at longitude ∼122.25◦W. The front separates
warm, fresh water to the west, from cold, salty water
to the east (Figure3a-d). The maximum lateral gradi-
ents of these properties are clearly observed at longitude

Figure 2: (Continues from Figure 1) The algorithm cal-
culates the mean value of the lateral gradients over the
layer of interest. In this example, we use data from
10m to 15m. The algorithm calculates the mean value
(bold red line in panel a) and the n-standard deviation
(in this case, n=1.2; red broken lines in panel a). All
points above the n-value standard deviation are consid-
ered potential fronts (red circles in panel b). A boolean
is used to isolate the front crossings (panel c). The
width of the front is used to choose the front crossing
when more than one front is present. The crossing cho-
sen by the algorithm is marked with a red arrow.

∼122.25◦W (Figure3e-i). We apply the two methods
described above to the upper 30 m of the water col-
umn.

The VTHI method detects a decrease of VTHI value
(note that a lower VTHI value means the observed wa-
ter column is more homogeneous vertically) between
∼122.25-122.28◦W, which corresponds to the maximum
lateral gradient of buoyancy (Figure 3h). If we calcu-
late the lateral gradient of VTHI we find agreement
with the maximum lateral gradient of buoyancy (Fig-
ure 3i). Small differences are attributed to the role of
salinity in the buoyancy values, which is not accounted
for in VTHI.

Although both techniques give basically the same
result, VTHI only captures upwelling fronts and so
is specifically designed with Monterey Bay hydrogra-
phy/circulation in mind. Our algorithm would be more
general for detecting fronts throughout the ocean. We
acknowledge that the need for interpolation in the lat-
eral gradient method presented in this paper may pose
difficulties for the implementation of this method on-
board underwater vehicles. In the future, an onboard
method of calculating lateral gradients without inter-
polation would be required.

Autonomous Control of Underwater
Vehicles for Front Tracking

A technique was developed to control a group of ve-
hicle to repeatedly sample across a dynamic ocean as
it evolves over time. Vehicles must be able to mod-
ify their transects in order to adapt to the changing
ocean conditions. The control algorithm (Algorithm
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Figure 3: Comparison between lateral gradient detec-
tion method and vertical temperature homogeneity in-
dex (VTHI). (a-c) Vertical sections of (a) Temperature,
θ, (b) Salinity, S, and (c) Buoyancy, b. (d-f) Lateral
gradients of θ, S and b. (g) Front detection using ab-
solute values of VTHI (blue) and lateral gradient of
b (red). (h) Front detection using lateral gradients of
VTHI (blue) and lateral gradient of b (red).

1) operates as follows. When first deployed, an ini-
tial estimated front location and orientation is manu-
ally provided based on available data from other assets.
The vehicles are equally spaced along this estimated
front. Each vehicle is commanded on an initial tran-
sect orthogonal to the provided estimated front. When
the vehicle surfaces to plan, Algorithm 1 is executed.
The vehicle location and the scientific data from the
current transect are provided as vehicle location and
transect data respectively. The vehicles location along
the transect is calculated as locationp by projecting the
vehicles current location onto the commanded transect.
If the vehicle has traveled a minimum distance along
the commanded transect, specified by transect distmin,
then the front-crossing detection algorithm is run on the
data from this transect. The resulting front-crossing is
defined as new front crossing. If the vehicle is a spec-
ified distance past this new front detection, then the
front is re-estimated using linear regression on front
detections from all vehicles, otherwise the transect is
continued. When re-estimating, only certain front de-
tections from each vehicle are considered, specified by
valid front detections. We used two methods when
selecting the subset of detections used in the linear re-
gression: a time based approach where detections from
the last N hours were considered and a latest detec-
tion approach where only the last detection from each
vehicle was considered. These two approaches are de-
fined in the procedure get estimation crossings. The
new transectp is calculated such that it is orthogonal
to estimated front. The vehicle is then commanded

on this new transect. In order to prevent the vehicle
from leaving the study area, transect distmax is de-
fined. If a transect has reached this length the front is
re-estimated, a transect orthogonal to this is defined,
and the vehicle is commanded on this new transect.
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Figure 4: Iver transects on May 11 with temperature
averaged from 10 meters to 15 meters plotted. Front
crossings are shown as blue dots and estimated fronts
are shown as blue lines. Each vehicle starting location is
labeled with the vehicle name and the date. The second
transect for each vehicle is orthogonal to the estimated
front from the front crossings on the first transect.

Pilot Experiment
Experiment Site

The pilot experiment took place in Monterey Bay, Cal-
ifornia (36.80◦N, 121.90◦W) from May to June 2017.

The circulation in Monterey Bay is characterized by
a persistent coastal upwelling, in response to preva-
lent northerly winds, which generates highly-productive
cold coastal regions [Hickey, 1979; Lynn and Simp-
son, 1987]. Physical–biological coupling at the edges of
mesoscale eddies, and turbidity plumes resulting from
the interaction of the flow with topography, influence
the phytoplankton ecology [Ryan, Chavez, and Belling-
ham, 2005]. Offshore (>150 km), the California Cur-
rent (CC) flows southward with surface speeds of ∼0.25
m s−1 [Hickey, 1979; Lynn and Simpson, 1987]. Near
the coast (<150 km), the surface flow varies seasonally,
flowing northward in fall and winter [Reid and Schwart-
zlose, 1962], and receiving the name of the Inshore
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Iver AUVs

Algorithm 1 Linear Front Delineation and Tracking
procedure vehicle retasking(vehicle location, transect data) . Run
this procedure when a vehicle surfaces to plan

locationp ← project (transect, vehicle location)

if dist
(
transect start, locationp

)
>= transect distmin then

new crossing ← detect crossings (transect data)
if new crossing was detected then

crossings← crossings
⋃
{new crossing}

valid crossings← get estimation crossings(crossings)
estimated front← linear regression (valid crossings)
locationf ← project (transect, new front crossing)

if dist
(
locationp, locationf

)
> εpast front km then

Calculate transectp s.t. transectp ⊥ estimated front
Command vehicle on transectp

else
Continue on current transect

else if dist
(
transect start, locationp

)
<= transect distmax then

valid crossings← get estimation crossings(crossings)
estimated front← linear regression (valid crossings)
Calculate transectp s.t. transectp ⊥ estimated front
Command vehicle on transectp

procedure get estimation crossings(crossings) . First of two options
for this procedure

return Latest front crossing for each vehicle.

procedure get estimation crossings(crossings) . Second of two options
for this procedure

return {crossing ∈ crossings | crossing.time > current time −
εtime}

Countercurrent (IC) [Lynn and Simpson, 1987]. The IC
is intermittent in space and time. Below, the subsurface
California Undercurrent (CU) flows northward. South
of Monterey Bay, at Point Sur (36.31◦N, 121.90◦W), the
CU separates from the coast due to topographic cur-
vature and flow inertia [Molemaker, McWilliams, and
Dewar, 2015] and forms mesoscale anticyclonic eddies
whose inner edge reaches the shelf break off Monterey
Bay.

In May 2017, an intensive upwelling plume spread
southeastward across the mouth of Monterey Bay. A
fleet of AUVs were deployed to detect and track the
fronts between the upwelling plume and the stratified
inner bay water. Over the shelf, KISS IVERs were set
to detect lateral gradients of temperature from 10m to
15m. Over the slope, temperature in the upwelling wa-
ter column was remarkably homogeneous in the vertical
dimension. The operations region of the Iver AUVs are
shown in Figure 5.

Iver AUVs

This work was demonstrated on two OceanServer Iver2
AUVs, shown in Figure 6. The method is extensible
to other platforms and indeed other domains where
the vehicles are able to at least intermittently trans-
mit collected data and receive new instructions mid-
deployment. Both of the vehicles were equipped with
a hull-mounted Neil Brown conductivity/temperature
sensor (Ocean Sensors Inc.) which served as the pri-
mary scientific payload for this work. Additionally, one
of these vehicles, Iver-106, was an Ecomapper variant
equipped with a SonTek Doppler velocity log (DVL), an
Ocean-Server compass for attitude estimation, a WHOI
micro-modem 2 and a depth sensor. The other Iver2 ve-
hicle, Iver-136, was similarly equipped with the WHOI
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Figure 5: Map of the 2017 pilot experiment region near
Monterey Bay, California. The operation region of the
Iver AUVs are shown.

micro-modem 2, compass and depth sensor as well as
a dual upward, downward facing 600 kHz RDI phased
array DVL, a Microstrain 3DM-GX3-25 and an APS-
1540 fluxgate magnetometer. The Iver2 AUVs have an
approximate maximum horizontal velocity of 2 m s−1

and were operated at a speed of 1.5 m s−1 for these tri-
als. These vehicles, are shown on board the R/V Shana
Rae in Figure 6 during operations in August 2016.

Figure 6: OceanServer Technology, Inc. Iver2 AUVs on-
board the R/V Shana Rae

Prior to shipping the vehicles were cross-calibrated
against a Seabird SBE49 in a tank to get the relative
sensor offsets. These offsets seemed to drift during ship-
ping and the collocated measurements taken in the har-
bour and during deployment. In post-processing, Iver-
106 was corrected for a salinity offset of 0.5180 practical
salinity units.

Vehicle control

The Iver AUVs required some modifications to enable
the transmission of data and receiving of new instruc-
tions during operations. Four communication modali-
ties are available to the Iver, Iridium short burst data
(SBD), Wi-Fi, 900 MHz RF, and acoustic modem. Sci-

Copyright c© 2018, all rights reserved



entific data such as position, conductivity, temperature,
and timestamps can be received and new commands can
be sent over any of these four available communication
links. Possible commands include stopping a mission,
starting a mission already loaded on the vehicle, parking
the vehicle and inserting segments of waypoints into the
already running mission. Initially, it was planned to use
the segment insertion to facilitate the retasking of the
vehicles. While these commands were successfully re-
ceived and interpreted by the vehicle, some unexplained
behaviors while using this command precluded its ongo-
ing use. As a temporary work around for the 2017 field
trials in Monterey we used the outputs of the planning
software to manually program a new mission which was
then loaded onto the AUV over the RF link.

Results
We introduce a metric in order to quantify the perfor-
mance of the front tracking control techniques presented
here. For a given transect N , the front location, as pre-
dicted by transectN−1, and the front location observed
on transect N are compared. As a baseline, the ob-
served front location for transect N is also compared to
the initial front-geometry estimation provided manually
at the beginning of each experiment. More specifically,
the metric is defined as follows. For a given transect
N , define the initial front-geometry estimation man-
ually provided at the beginning of the experiment as
initial estimation, the front-geometry estimation used
to create transect N as predicted estimation and the
front-geometry estimation after transect N as observed
estimation. Calculate the intersection point of transect
N and the predicted estimation as well as the the inter-
section point of transect N and the observed estimation.
The front tracking metric is defined as the distance be-
tween these two intersection points. The intersection
point of transect N and initial estimation is also cal-
culated. The baseline metric is defined as the distance
between this intersection point and the intersection of
transect N and the observed estimation. These two
metrics are calculated for each transect. An example of
the calculation for this metric can be seen in Figure 7.

The time between front crossings has an important
role in the performance of this metric. Longer time be-
tween front crossings allows for a larger change in the
ocean conditions. This time is a function of the speed of
the vehicle and the length of a transect. The dynamism
of the experiment region also affects this metric as this
determines how much one might expect the front to
evolve between two crossings. Due to this, direct com-
parisons of this metric between vehicles and operations
areas are questionable, however, it can be used to as-
sess the performance of the front tracking algorithm as
well as indicate the suitability of a vehicle to a specific
operating environment.

Iver AUV Results
Two Iver AUVs were operated on three days, 4 May,
9 May, and 11 May 2017. They are limited to single
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Figure 7: An example calculation of the front tracking
metric. We use the May 11 i136 transect 2 for the exam-
ple. The initial manually provided transect (i.e. initial
estimation) is plotted a black line. The front-geometry
estimation from the previous transect (i.e. predicted es-
timation) is plotted as a green line. The front-geometry
estimation after transect 2 (i.e. observed estimation) is
plotted as a blue line. The intersection of these three
lines and the transect in question are plotted as dots
of their respective colors. The distances used for the
baseline and front tracking metric are shown in red.

day deployments due to the short range of the vehicles.
Some operational constraints required modifications to
the outlined front tracking control method. The range
limitation associated with acoustic communication and
the desire to have the ability for quick vehicle recovery
required the two Iver AUVs to remain in close prox-
imity to each other. The front tracking algorithm as
presented does not guarantee any vehicle synchroniza-
tion with regards to position. In order to solve this
issue the vehicles pause at any point in which a new
transect could start and waits for every other vehicle to
reach their respective decision points. Once all vehicles
have paused, the front-crossing detection algorithms are
executed for each vehicle. If at least one vehicle has de-
tected a front crossing, a new linear front estimation
well be generated and all vehicles will be commanded
orthogonal to it. If no front crossings are detected then
all vehicles will continue on the current transect.

In this experiment the minimum transect distance
was set at 3 km past the current estimated front. The
minimum distance required for a vehicle to go past the
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Baseline Metric (m) Front Tracking Metric (m)
Average 1619.598 839.393
Std Dev 943.674 523.301

Table 1: Baseline and Front Tracking metric for the
Iver Experiment on 9 and 11 May 2017

front-crossing detection on a given transect was set to
0 km, this results in the vehicle turning around at the
first decision point after a front crossing is detected.
The first decision point can be significantly past the de-
tected front crossing due the minimum transect length.
Ideally this would be set to a longer distance to insure
that the vehicle has crossed the entire front before cal-
culating a new transect, however due to software con-
straints during this deployment this was not possible.
Front-geometry estimation was performed with the lat-
est front crossing from each vehicle. The lateral gra-
dient front-crossing detection algorithm was used with
the Iver AUVs. Figure 8 shows the results of the Iver
experiment on 9 and 11 May, 2017. Two transects were
completed per vehicle per day. The starting locations
for each vehicle on each day are labeled. Temperature
averaged from 10 meters to 15 meters is plotted. All
front crossing and front-geometry estimations used dur-
ing the deployment are shown as blue dots and blue
lines respectively. A number of different depth inter-
vals for front-crossing detection were used during the
deployment in order to examine the sensitivity of the
algorithm. For reference, the front crossings and front-
geometry estimations for 10 meter to 15 meter depth
range are also plotted in green.

The baseline and front tracking metric for the Iver
experiment is presented in Table 1. These values are
calculated with the transects from both vehicles on 09
May and 11 May. We see a lower average distance with
the front tracking metric compared to the baseline met-
ric, indicating an improvement in the ability to tracking
a front when using the method presented here. This re-
sult is also indicative of the suitability of the Iver plat-
form for this specific region. Iver AUVs are fast moving
vehicles with relatively short transects operating in a
region where the front is mainly bathymetry driven, re-
sulting in smaller changes in ocean conditions between
front crossings. The dataset presented here is limited.
It is an an initial step towards understanding the perfor-
mance of the front estimation and tracking algorithm,
however more data is necessary to make conclusions.

Discussion
Related Work

Adaptive sampling and control of autonomous under-
water vehicles has been extensively studied, including
foundational work with the Autonomous Ocean Sam-
pling Network [Curtin and Bellingham, 2009; Curtin
et al., 1993; Haley et al., 2009; Leonard et al., 2007;
Ramp et al., 2009]. Much of this work focuses on spa-
tially adapting the control strategy in order to opti-
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Figure 8: Map view of the temperature averaged from
10 to 15 meters for the Iver transects on 09 and 11
May, 2017. Front crossings and front-geometry estima-
tions used during the experiment are indicated with a
blue dot and blue line respectively. Front crossings and
front-geometry estimations using data from 10 meters
to 15 meters during the experiment are indicated with a
green dot and green line respectively. The start location
for each vehicle for each day is labeled.

mally sample a fixed region. Our method instead per-
forms repeated focused sampling across a single front
as it evolves over time.

Other work focused on control strategies that adapt
to the current conditions. the Adaptive Sampling and
Prediction project [Leonard et al., 2010] used adaptive
control in order to coordinate 6 gliders to fly in loops
at fixed spacing. Troesch et al. [2016] uses an ocean
model in order to improve the station keeping ability of
vertically profiling floats. Eriksen et al. [2001] describes
the capabilities of a Seaglider to compensate for drift
from currents using depth averaged currents over mul-
tiple dives. Those important works focus on adaptive
control of vehicles based on the current conditions they
are in, in order to improve sampling. We instead look
at other hydrographic properties in order to optimize
sampling of a specific feature.

A number of different near real-time feature track-
ing methods exist for applications such as thermo-
clines [Cruz and Matos, 2010; Sun et al., 2016; Zhang
et al., 2010], and oil spills [Zhang et al., 2011]. These
approaches focus on tracking a one-dimensional feature
using a single vehicle, while we utilize multiple vehi-
cles to track a two-dimensional feature. Flexas et al.
[2018] uses an ocean model and autonomous planning
to optimize sampling of submesoscale structures. Our
approach focuses on frontal tracking using trailing in-
situ vehicle data as apposed to an ocean model.

Other work has investigated two-dimensional feature
tracking. Zhang et al. [2013, 2016] utilize the VTHI
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front detection method on a single vehicle to detect
and track an upwelling front on a zig-zag track with
a fixed turn angle. Cruz and Matos [2014] tracks any
gradient boundary using a single vehicle following a dy-
namic zig-zag pattern and a lateral gradient detection
algorithm to estimate the gradient boundary using an
arc whose curvature is defined by the last three front-
crossing locations. Kularatne, Smith, and Hsieh [2015]
tests a method in a tank to perform a zig-zag across a
front using an autonomous surface vehicle. A similar
method can also be applied to tracking the center of a
phytoplankton bloom patch [Godin et al., 2011]. Ma-
chine learning, in the form of policy learning, has also
been applied to the problem of tracking the edge of a
harmful algal bloom [Magazzeni et al., 2014]. Other
work focuses on tracking algal blooms by flying forma-
tions relative to the bloom as tracked by a drifter [Das
et al., 2012]. Petillo, Schmidt, and Balasuriya [2012]
uses a simulated network of AUVs in order to estimate
the boundary of a simulated plume. These all differ
from our approach in that we are using multiple vehi-
cles in order to estimate the position and orientation of
an ocean front using a method of gridded front detec-
tions as well as a linear front model.

Issues and Future Work

The front-crossing detection method is key in order for
the front-geometry estimation and autonomous control
portions of this method to work correctly. Throughout
this experiment multiple points of improvement were
identified in regards to the lateral gradient front detec-
tion. Front detection could be improved by gridding
data based on distance traveled as apposed to time.
This is particularly important for slower moving vehi-
cles. The gridding process itself could also be improved
by using objective mapping. In this experiment temper-
ature was used, other ocean properties such as, buoy-
ancy could also be used. The lateral gradient front de-
tection method consists of many parameters, a more in-
depth analysis of the effects of these parameters would
be beneficial.

One of the issues encountered in the experiments was
determining that the sampled front was the same as pre-
viously sampled fronts. Crossing multiple fronts would
result in erroneous front-geometry estimations. In or-
der to handle this situation our front-crossing detection
technique would need to be extended in order to se-
lect a crossing based on a set of criteria such as front
direction (i.e. cold-to-warm versus warm-to-cold), gra-
dient strength, and front size. By using these different
properties a specific front can be targeted.

The communication paradigms of the vehicles used is
important as our technique was implemented off-board.
Data decimation is an issue with vehicles that are un-
able to send all the available data to the planner. A
data decimation scheme must be selected that allows for
the front detection algorithms to perform well. These
issues could be avoided by bringing the front tracking
algorithm onboard the vehicles, however this introduces

a number of different issues such as limited computing
capabilities and inter-vehicle communication.

Conclusion

This work presents a method of adaptive control of mul-
tiple autonomous underwater vehicles in order to track
an ocean front evolving over time. This method uti-
lizes a near real-time front detection method, and an
off-board planner doing front estimation using a linear
model and vehicle retasking. This method builds upon
the prior efforts of the AOSN deployments and takes a
further step towards a fully-autonomous adaptive sam-
pling framework [Thompson et al., 2017].

The experiment was conducted in May, 2017 in Mon-
terey Bay, California using two short-range Iver AUVs.
A front detection technique based on lateral gradients
with gridded and interpolated data was used. During
this experiment we demonstrated the performance of
the front detection method on data from the vehicles.
We also demonstrated the capability of the autonomous
control method for front tracking. In doing this we in-
troduced a metric which allows for a quantitative com-
parison of the front tracking algorithms performance as
well as an indication of the suitability of a platform in a
specific operating environment. The multi-vehicle front
tracking approach allows for improved synopticity over
a zig-zag method when sampling a front. While the use
of off-board front detection, estimation, and retasking
algorithms provided more processing power and allowed
for flexible implementation for different platforms.
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